Received 14 November 2005

Accepted 8 December 2005

Online 14 December 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Fang Cao, Jun Yin, Guang-Ao Yu and Sheng-Hua Liu*

Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: chshliu@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.051 wR factor = 0.120 Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-[(3*RS*)-3-(4-Chlorophenyl)heptanoyl]bornane-10,2-sultam

In the title compound, $C_{23}H_{32}CINO_3S$, molecules are linked *via* $C-H\cdots N/O$ interactions, forming two-dimensional sheets parallel to the (100) plane.

Comment

The readily available enantiomers of bornane-10,2-sultam serve as efficient, versatile and practical chiral auxiliaries (Oppolzer, 1990), and we have focused our attention on this field. In this paper, we present the X-ray crystallographic analysis of the title compound, (I).

In (I), the six-membered ring of sultam exhibits a boat form (Fig. 1). The C9/C4/C5/C6 and C6/C7/C8/C9 planes form a dihedral angle of 111.1 (1)°. The C3/C6/C9 plane forms almost equal dihedral angles with the above planes [124.1 (1) and 124.7 (1)°, respectively]. The molecules are linked *via* C–H···N/O interactions (Table 2) along the *b* and *c* axes, forming two-dimensional sheets parallel to the (100) plane (Fig. 2).

Experimental

Compound (I) was synthesized from (-)-sultam and cinnamic chloride (Huang *et al.*, 1999). Crystals suitable for X-ray data collection were obtained by slow evaporation of a dichloromethane solution at 292 K.

Crystal data	
C ₂₃ H ₃₂ ClNO ₃ S	$D_x = 1.261 \text{ Mg m}^{-3}$
$M_r = 438.01$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 1773
a = 9.2278 (13) Å	reflections
b = 9.6269 (14) Å	$\theta = 2.2-21.7^{\circ}$
c = 13.1720 (19) Å	$\mu = 0.28 \text{ mm}^{-1}$
$\beta = 99.736 \ (2)^{\circ}$	T = 292 (2) K
V = 1153.3 (3) Å ³	Block, colorless
Z = 2	0.30 \times 0.20 \times 0.10 mm
Data collection	
Bruker SMART CCD area-detector	3478 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.025$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}$
Absorption correction: none	$h = -11 \rightarrow 10$
6334 measured reflections	$k = -11 \rightarrow 11$
4179 independent reflections	$l = -16 \rightarrow 13$

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.120$ S = 1.044179 reflections 265 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0545P)^{2} + 0.074P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 1762 Friedel pairs Flack parameter: 0.08 (8)

Table 1

Selected geometric parameters (Å, °).

C8-N1	1.477 (4)	C21-Cl1	1.748 (4)
C10-S1	1.791 (3)	N1-S1	1.684 (2)
C11-O3	1.196 (3)	O1-S1	1.411 (2)
C11-N1	1.391 (4)	O2-S1	1.417 (2)
C9-C10-S1	107.0 (2)	N1-S1-C10	96.06 (14)
C9-C4-C5-C6	-3.8 (4)	C12-C13-C18-C23	-49.7 (4)
C6-C7-C8-C9	-8.4(3)	C14-C13-C18-C19	-103.8(4)
N1-C8-C9-C10	-31.2(4)	C9-C8-N1-S1	26.1 (3)
C8-C9-C10-S1	23.3 (4)	C8-N1-S1-C10	-11.1(3)
C11-C12-C13-C14	165.0 (3)	C9-C10-S1-N1	-7.7(3)
C14-C15-C16-C17	-178.4(4)		

Table 2			
Hydrogen-bond	geometry	(Å,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C12-H12A···O2	0.97	2.55	3.139 (5)	119
$C1-H1A\cdots N1$	0.96	2.47	3.141 (4)	126
$C20-H20\cdots O2^{i}$	0.93	2.48	3.363 (5)	159
C10−H10A···O1 ⁱⁱ	0.97	2.55	3.220 (4)	126

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + 1$; (ii) $-x, y - \frac{1}{2}, -z$.

All H atoms were constrained to an ideal geometry, with C–H = 0.95–1.00 Å, and with $U_{iso}(H)$ = $1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The absolute configuration is consistent with the known absolute configuration of (–)-camphor-2,10-sultam (Boiadjiev *et al.*, 2001).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, the Hubei Province Science Fund for Distinguished Young Scholars (No.

Figure 1

View of the molecule of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The molecular packing of (I), viewed along the *b* axis. Dashed lines indicate $C-H\cdots O/N$ interactions. H atoms not involved in these interactions have been omitted for clarity.

2003ABB006) and the Natural Science Foundation of Hubei Province (No. 2005ABA038).

References

- Boiadjiev, S. E. & Lightner, D. A. (2001). Tetrahedron Asymmetry, 12, 2551– 2564.
- Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Huang, J.-X., Li, Y., Ma, X.-Q. & Zhou, Z.-Q. (1999). Chem. Res. Chin. Univ. 15, 23–28.
- Oppolzer, W. (1990). Pure Appl. Chem. 62, 1241-1250.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.