Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiu-Fang Cao, Jun Yin, Guang-Ao Yu and Sheng-Hua Liu*

Key Laboratory of Pesticides \& Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
chshliu@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.051$
$w R$ factor $=0.120$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

N-[(3RS)-3-(4-Chlorophenyl)heptanoyl]bornane-10,2-sultam

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{ClNO}_{3} \mathrm{~S}$, molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{N} / \mathrm{O}$ interactions, forming two-dimensional sheets parallel to the (100) plane.

Comment

The readily available enantiomers of bornane-10,2-sultam serve as efficient, versatile and practical chiral auxiliaries (Oppolzer, 1990), and we have focused our attention on this field. In this paper, we present the X-ray crystallographic analysis of the title compound, (I).

(I)

In (I), the six-membered ring of sultam exhibits a boat form (Fig. 1). The $\mathrm{C} 9 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$ and $\mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9$ planes form a dihedral angle of 111.1 (1) ${ }^{\circ}$. The C3/C6/C9 plane forms almost equal dihedral angles with the above planes [124.1 (1) and $124.7(1)^{\circ}$, respectively]. The molecules are linked via $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N} / \mathrm{O}$ interactions (Table 2) along the b and c axes, forming two-dimensional sheets parallel to the (100) plane (Fig. 2).

Experimental

Compound (I) was synthesized from (-)-sultam and cinnamic chloride (Huang et al., 1999). Crystals suitable for X-ray data collection were obtained by slow evaporation of a dichloromethane solution at 292 K .

Crystal data
$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{ClNO}_{3} \mathrm{~S}$
$D_{x}=1.261 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=438.01$
Monoclinic, $P 2_{1}$
$a=9.2278$ (13) A
$b=9.6269$ (14) Å
$c=13.1720$ (19) A
$\beta=99.736(2)^{\circ}$
$V=1153.3$ (3) \AA^{3}
$Z=2$
Mo K α radiation
Cell parameters from 1773 reflections
$\theta=2.2-21.7^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: none
6334 measured reflections
4179 independent reflections

Received 14 November 2005
Accepted 8 December 2005
Online 14 December 2005

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.120$
$S=1.04$
4179 reflections
265 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0545 P)^{2}\right. \\
& +0.074 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.18 \mathrm{e}^{\mathrm{A}^{-3}} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1762 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.08 \text { (8) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

C8-N1	$1.477(4)$	$\mathrm{C} 21-\mathrm{Cl} 1$	$1.748(4)$
$\mathrm{C} 10-\mathrm{S} 1$	$1.791(3)$	$\mathrm{N} 1-\mathrm{S} 1$	$1.684(2)$
$\mathrm{C} 11-\mathrm{O} 3$	$1.196(3)$	$\mathrm{O} 1-\mathrm{S} 1$	$1.411(2)$
$\mathrm{C} 11-\mathrm{N} 1$	$1.391(4)$	$\mathrm{O} 2-\mathrm{S} 1$	$1.417(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{S} 1$	$107.0(2)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 10$	$96.06(14)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-3.8(4)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18-\mathrm{C} 23$	$-49.7(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-8.4(3)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 18-\mathrm{C} 19$	$-103.8(4)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-31.2(4)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1$	$26.1(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{S} 1$	$23.3(4)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 10$	$-11.1(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$165.0(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{S} 1-\mathrm{N} 1$	$-7.7(3)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-178.4(4)$		

Table 2
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 2$	0.97	2.55	$3.139(5)$	119
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 1$	0.96	2.47	$3.141(4)$	126
C20-H20 O^{i}	0.93	2.48	$3.363(5)$	159
C10-H10A O^{ii}	0.97	2.55	$3.220(4)$	126
Symmetry codes: (i) $-x, y+\frac{1}{2},-z+1 ;$ (ii) $-x, y-\frac{1}{2},-z$				

All H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=$ $0.95-1.00 \AA$ A and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The absolute configuration is consistent with the known absolute configuration of (-)-camphor-2,10-sultam (Boiadjiev et al., 2001).

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, the Hubei Province Science Fund for Distinguished Young Scholars (No.

Figure 1
View of the molecule of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
The molecular packing of (I), viewed along the b axis. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{N}$ interactions. H atoms not involved in these interactions have been omitted for clarity.

2003ABB006) and the Natural Science Foundation of Hubei Province (No. 2005ABA038).

References

Boiadjiev, S. E. \& Lightner, D. A. (2001). Tetrahedron Asymmetry, 12, 25512564.

Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Huang, J.-X., Li, Y., Ma, X.-Q. \& Zhou, Z.-Q. (1999). Chem. Res. Chin. Univ. 15, 23-28.
Oppolzer, W. (1990). Pure Appl. Chem. 62, 1241-1250.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

